• DocumentCode
    2906775
  • Title

    On parameter estimation for noncausal models of non-Gaussian signals

  • Author

    Tugnait, Jitendra K.

  • Author_Institution
    Dept. of Electr. Eng., Auburn Univ., AL, USA
  • fYear
    1991
  • fDate
    4-6 Nov 1991
  • Firstpage
    731
  • Abstract
    The authors consider the problem of estimating the parameters of a stable (stationary), scalar ARMA (autoregressive moving average) (p , q) signal model driven by an i.i.d. (independently identically distributed) non-Gaussian sequence. The driving noise sequence is not observed. The signal is allowed to be nonminimum phase and/or noncausal (i.e., poles may lie both inside and outside the unit circle). The author addresses the problem of parameter identifiability given the higher order cumulants of the signal on a finite set of lags. The set of lags required to achieve parameter identifiability is the smallest to date. Two computer simulation examples are presented to illustrate the proposed approach
  • Keywords
    parameter estimation; signal processing; IID sequence; autoregressive moving average; computer simulation; higher order cumulants; independently identically distributed; nonGaussian signals; noncausal models; noncausal signal; nonminimum phase signal; parameter estimation; scalar ARMA signal model; Hydrogen; Integrated circuit modeling; Parameter estimation; Phase estimation; Random sequences; Signal processing; Transfer functions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signals, Systems and Computers, 1991. 1991 Conference Record of the Twenty-Fifth Asilomar Conference on
  • Conference_Location
    Pacific Grove, CA
  • ISSN
    1058-6393
  • Print_ISBN
    0-8186-2470-1
  • Type

    conf

  • DOI
    10.1109/ACSSC.1991.186544
  • Filename
    186544