• DocumentCode
    2907977
  • Title

    Fuzzy piecewise linear regression

  • Author

    Bisserier, A. ; Galichet, S. ; Boukezzoula, R.

  • Author_Institution
    Lab. d´´Inf., Univ. de Savoie, Annecy
  • fYear
    2008
  • fDate
    1-6 June 2008
  • Firstpage
    2089
  • Lastpage
    2094
  • Abstract
    Fuzzy regression using possibilistic concepts allows the identification of models from uncertain data sets. However, some limitations still exist about the possible evolution of the output spread with respect to inputs. We present here a modified form of fuzzy linear model whose output can have any kind of output spread tendency. The formulation of the linear program used to identify the model introduces a modified criterion that assesses the model fuzziness independently of the collected data. These concepts are used in a global identification process in charge of building a piecewise model able to represent every kind of output evolution.
  • Keywords
    fuzzy set theory; linear programming; regression analysis; fuzzy linear model; fuzzy piecewise linear regression; global identification process; linear program; output spread tendency; Fuzzy systems; Piecewise linear techniques;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on
  • Conference_Location
    Hong Kong
  • ISSN
    1098-7584
  • Print_ISBN
    978-1-4244-1818-3
  • Electronic_ISBN
    1098-7584
  • Type

    conf

  • DOI
    10.1109/FUZZY.2008.4630658
  • Filename
    4630658