DocumentCode :
2907977
Title :
Fuzzy piecewise linear regression
Author :
Bisserier, A. ; Galichet, S. ; Boukezzoula, R.
Author_Institution :
Lab. d´´Inf., Univ. de Savoie, Annecy
fYear :
2008
fDate :
1-6 June 2008
Firstpage :
2089
Lastpage :
2094
Abstract :
Fuzzy regression using possibilistic concepts allows the identification of models from uncertain data sets. However, some limitations still exist about the possible evolution of the output spread with respect to inputs. We present here a modified form of fuzzy linear model whose output can have any kind of output spread tendency. The formulation of the linear program used to identify the model introduces a modified criterion that assesses the model fuzziness independently of the collected data. These concepts are used in a global identification process in charge of building a piecewise model able to represent every kind of output evolution.
Keywords :
fuzzy set theory; linear programming; regression analysis; fuzzy linear model; fuzzy piecewise linear regression; global identification process; linear program; output spread tendency; Fuzzy systems; Piecewise linear techniques;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1098-7584
Print_ISBN :
978-1-4244-1818-3
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2008.4630658
Filename :
4630658
Link To Document :
بازگشت