DocumentCode :
2912998
Title :
Image ranking and retrieval based on multi-attribute queries
Author :
Siddiquie, Behjat ; Feris, Rogerio S. ; Davis, Larry S.
Author_Institution :
Univ. of Maryland, College Park, MD, USA
fYear :
2011
fDate :
20-25 June 2011
Firstpage :
801
Lastpage :
808
Abstract :
We propose a novel approach for ranking and retrieval of images based on multi-attribute queries. Existing image retrieval methods train separate classifiers for each word and heuristically combine their outputs for retrieving multiword queries. Moreover, these approaches also ignore the interdependencies among the query terms. In contrast, we propose a principled approach for multi-attribute retrieval which explicitly models the correlations that are present between the attributes. Given a multi-attribute query, we also utilize other attributes in the vocabulary which are not present in the query, for ranking/retrieval. Furthermore, we integrate ranking and retrieval within the same formulation, by posing them as structured prediction problems. Extensive experimental evaluation on the Labeled Faces in the Wild(LFW), FaceTracer and PASCAL VOC datasets show that our approach significantly outperforms several state-of-the-art ranking and retrieval methods.
Keywords :
image retrieval; FaceTracer datasets; PASCAL VOC datasets; image ranking; image retrieval methods; labeled faces in the wild; multiattribute queries; Equations; Feature extraction; Hair; Image color analysis; Image retrieval; Mathematical model; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4577-0394-2
Type :
conf
DOI :
10.1109/CVPR.2011.5995329
Filename :
5995329
Link To Document :
بازگشت