DocumentCode :
2913147
Title :
Optimal similarity registration of volumetric images
Author :
Kokiopoulou, Effrosyni ; Zervos, Michail ; Kressner, Daniel ; Paragios, Nikos
Author_Institution :
Seminar for Appl. Math., ETH Zurich, Zurich, Switzerland
fYear :
2011
fDate :
20-25 June 2011
Firstpage :
2449
Lastpage :
2456
Abstract :
This paper proposes a novel approach to optimally solve volumetric registration problems. The proposed framework exploits parametric dictionaries for sparse volumetric representations, ℓ1 dissimilarities and DC (Difference of Convex functions) decomposition. The SAD (sum of absolute differences) criterion is applied to the sparse representation of the reference volume and a DC decomposition of this criterion with respect to the transformation parameters is derived. This permits to employ a cutting plane algorithm for determining the optimal relative transformation parameters of the query volume. It further provides a guarantee for the global optimality of the obtained solution, which-to the best of our knowledge-is not offered by any other existing approach. A numerical validation demonstrates the effectiveness and the large potential of the proposed method.
Keywords :
image registration; image representation; parameter estimation; SAD criterion; cutting plane algorithm; difference of convex function decomposition; l1 dissimilarities; optimal similarity registration; sparse volumetric representation; sum of absolute differences criterion; transformation parameter determination; volumetric image registration problem; Approximation methods; Convex functions; Dictionaries; Graphics processing unit; Instruction sets; Manifolds; Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4577-0394-2
Type :
conf
DOI :
10.1109/CVPR.2011.5995337
Filename :
5995337
Link To Document :
بازگشت