• DocumentCode
    2913147
  • Title

    Optimal similarity registration of volumetric images

  • Author

    Kokiopoulou, Effrosyni ; Zervos, Michail ; Kressner, Daniel ; Paragios, Nikos

  • Author_Institution
    Seminar for Appl. Math., ETH Zurich, Zurich, Switzerland
  • fYear
    2011
  • fDate
    20-25 June 2011
  • Firstpage
    2449
  • Lastpage
    2456
  • Abstract
    This paper proposes a novel approach to optimally solve volumetric registration problems. The proposed framework exploits parametric dictionaries for sparse volumetric representations, ℓ1 dissimilarities and DC (Difference of Convex functions) decomposition. The SAD (sum of absolute differences) criterion is applied to the sparse representation of the reference volume and a DC decomposition of this criterion with respect to the transformation parameters is derived. This permits to employ a cutting plane algorithm for determining the optimal relative transformation parameters of the query volume. It further provides a guarantee for the global optimality of the obtained solution, which-to the best of our knowledge-is not offered by any other existing approach. A numerical validation demonstrates the effectiveness and the large potential of the proposed method.
  • Keywords
    image registration; image representation; parameter estimation; SAD criterion; cutting plane algorithm; difference of convex function decomposition; l1 dissimilarities; optimal similarity registration; sparse volumetric representation; sum of absolute differences criterion; transformation parameter determination; volumetric image registration problem; Approximation methods; Convex functions; Dictionaries; Graphics processing unit; Instruction sets; Manifolds; Optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
  • Conference_Location
    Providence, RI
  • ISSN
    1063-6919
  • Print_ISBN
    978-1-4577-0394-2
  • Type

    conf

  • DOI
    10.1109/CVPR.2011.5995337
  • Filename
    5995337