Title :
Evolutionary biclustering based on expression patterns
Author :
Pontes, Beatriz ; Giráldez, Raúl ; Aguilar-Ruiz, Jesús S.
Author_Institution :
Dept. of Comput. Sci., Univ. of Seville, Seville, Spain
Abstract :
The majority of the biclustering approaches for microarray data analysis use the Mean Squared Residue (MSR) as the main evaluation measure for guiding the heuristic. MSR has been proven to be inefficient to recognize several kind of interesting patterns for biclusters. Transposed Virtual Error (VEt) has recently been discovered to overcome MSR drawbacks, being able to recognize shifting and/or scaling patterns. In this work we propose a parallel evolutionary biclustering algorithm which uses VEt as the main part of the fitness function, which has been designed using the volume and overlapping as other objectives to optimize. The resulting algorithm has been tested on both synthetic and benchmark real data producing satisfactory results. These results has been compared to those of the most popular biclustering algorithm developed by Cheng and Church and based in the use of MSR.
Keywords :
data analysis; evolutionary computation; mean square error methods; pattern clustering; MSR drawback; benchmark real data; expression pattern; fitness function; mean squared residue; microarray data analysis; parallel evolutionary biclustering algorithm; scaling pattern; synthetic data; transposed virtual error; Algorithm design and analysis; Equations; Evolutionary computation; Gene expression; Genetic algorithms; Intelligent systems; Measurement; biclustering; gene expression data; genetic algorithm; microarray analysis; parallel computing;
Conference_Titel :
Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on
Conference_Location :
Cordoba
Print_ISBN :
978-1-4577-1676-8
DOI :
10.1109/ISDA.2011.6121711