Title :
Image retrieval with geometry-preserving visual phrases
Author :
Zhang, Yimeng ; Jia, Zhaoyin ; Chen, Tsuhan
Author_Institution :
Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA
Abstract :
The most popular approach to large scale image retrieval is based on the bag-of-visual-word (BoV) representation of images. The spatial information is usually re-introduced as a post-processing step to re-rank the retrieved images, through a spatial verification like RANSAC. Since the spatial verification techniques are computationally expensive, they can be applied only to the top images in the initial ranking. In this paper, we propose an approach that can encode more spatial information into BoV representation and that is efficient enough to be applied to large-scale databases. Other works pursuing the same purpose have proposed exploring the word co-occurrences in the neighborhood areas. Our approach encodes more spatial information through the geometry-preserving visual phrases (GVP). In addition to co-occurrences, the GVP method also captures the local and long-range spatial layouts of the words. Our GVP based searching algorithm increases little memory usage or computational time compared to the BoV method. Moreover, we show that our approach can also be integrated to the min-hash method to improve its retrieval accuracy. The experiment results on Oxford 5K and Flicker 1M dataset show that our approach outperforms the BoV method even following a RANSAC verification.
Keywords :
image representation; image retrieval; Flicker 1M dataset; GVP based searching algorithm; Oxford 5K dataset; RANSAC spatial verification; bag-of-visual-word representation; geometry-preserving visual phrase; image representation; image retrieval; min-hash method; random sample consensus; Artificial intelligence; Histograms; Image retrieval; Layout; Visualization; Vocabulary;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4577-0394-2
DOI :
10.1109/CVPR.2011.5995528