DocumentCode :
2919784
Title :
Probabilistic gaze estimation without active personal calibration
Author :
Chen, Jixu ; Ji, Qiang
Author_Institution :
Dept. of Electr., Comput. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA
fYear :
2011
fDate :
20-25 June 2011
Firstpage :
609
Lastpage :
616
Abstract :
Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often cumbersome and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the traditional eye gaze tracking methods, which estimate the eye parameter deterministically, our approach estimates the probability distributions of the eye parameter and the eye gaze, by combining image saliency with the 3D eye model. By using an incremental learning framework, the subject doesn´t need personal calibration before using the system. His/her eye parameter and gaze estimation can be improved gradually when he/she is naturally viewing a sequence of images on the screen. The experimental result shows that the proposed system can achieve less than three degrees accuracy for different people without calibration.
Keywords :
calibration; eye; human computer interaction; image sequences; learning (artificial intelligence); object tracking; parameter estimation; statistical distributions; 3D eye model; eye gaze tracking systems; human computer interaction; image sequences; incremental learning; parameter estimation; personal calibration; probabilistic gaze estimation; probability distributions; Calibration; Estimation; Head; Optical imaging; Probabilistic logic; Three dimensional displays; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4577-0394-2
Type :
conf
DOI :
10.1109/CVPR.2011.5995675
Filename :
5995675
Link To Document :
بازگشت