DocumentCode :
2920827
Title :
Study on Air Fine Particles Pollution Prediction of Main Traffic Route Using Artificial Neural Network
Author :
Mingjian, Fang ; Guocheng, Zhu ; Xuxu, Zheng ; Zhongyi, Yin
Author_Institution :
Coll. of Environ. & Bioeng., Chongqing Technol. & Bus. Univ., Chongqing, China
fYear :
2011
fDate :
19-20 Feb. 2011
Firstpage :
1346
Lastpage :
1349
Abstract :
In this paper the feasibility of artificial neural network technology for air fine particles pollution prediction of main traffic route was discussed. The concentration data of PM2.5, PM5 and PM10 were measured in Zhongshan road, the main traffic route of Chongqing, China. Parameter Φ of emission capacity of motor vehicles was used as the independent variable of prediction model. RBF and BP neural network were used to simulate the concentration of fine particles of different sizes. The results show that: (1) Prediction results of PM of different sizes are different, the simulating data of PM2.5 using RBF networks are better than those of PM5 and PM10; (2) The simulation effect of RBF neural network is related to maximum nerve cell number of network and the distribution density of radial basis function. When the maximum nerve cell number is 13 and the distribution density of radial basis function is 0.9, the simulation result of PM2.5 is best; (3) Using three hidden layers and Levenberg-Marquardt calculation method of BP neural network, good simulation effect could be achieved; (4) For PM2.5, the correlation coefficient between simulating data of testing sample and testing data are 0.94 and 0.91, the ratio of training error and testing error are 0.75 and 1.59 each by RBF and BP neural network. All above show that PM2.5 of main traffic route come mainly from vehicle emission. The two neural network established herein can be used to predict pollution of PM2.5.
Keywords :
air pollution; backpropagation; correlation methods; environmental science computing; prediction theory; radial basis function networks; road traffic; road vehicles; BP neural network; Levenberg Marquardt calculation method; PM10; PM2.5; PM5; RBF; Zhongshan road; air fine particles pollution; artificial neural network; main traffic route; motor vehicles emission capacity; nerve cell number; Artificial neural networks; Correlation; Predictive models; Radial basis function networks; Testing; Training; Vehicles; BP neural network; Levenberg-Marquardt method; PM2.5; RBF neural network; prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011 International Conference on
Conference_Location :
Changsha
Print_ISBN :
978-1-61284-278-3
Electronic_ISBN :
978-0-7695-4350-5
Type :
conf
DOI :
10.1109/CDCIEM.2011.431
Filename :
5748063
Link To Document :
بازگشت