DocumentCode :
2922181
Title :
Hybrid version of MLP neural network for transformer fault diagnosis system
Author :
Mamat, Wan Mohd Fahmi Wan ; Isa, Nor Ashidi Mat ; Zamli, Kamal Zuhairi ; Mamat, Wan Mohd Fairuz Wan
Author_Institution :
School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, MALAYSIA
Volume :
2
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
1
Lastpage :
6
Abstract :
This paper proposed an intelligent classification system to diagnose fault in oil insulator power transformer based on dissolved gas analysis (DGA). The system constructs using the application of hybrid version of standard multilayer perceptron (MLP) neural network called Hybrid Multilayer Perceptron (HMLP) neural network. The network is trained using modified recursive prediction error (MRPE) training algorithm. Performance analysis of the HMLP network is compared with standard MLP network trained using three different algorithms, i.e. Bayesian Regulation, Lavenberg-Marquardt and Gradient descent. The experiment result indicated that the HMLP network attains the best performance in the transformer fault diagnosis.
Keywords :
Dissolved gas analysis; Fault diagnosis; Hybrid intelligent systems; Multi-layer neural network; Multilayer perceptrons; Neural networks; Oil insulation; Petroleum; Power transformer insulation; Power transformers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology, 2008. ITSim 2008. International Symposium on
Conference_Location :
Kuala Lumpur, Malaysia
Print_ISBN :
978-1-4244-2327-9
Electronic_ISBN :
978-1-4244-2328-6
Type :
conf
DOI :
10.1109/ITSIM.2008.4631662
Filename :
4631662
Link To Document :
بازگشت