• DocumentCode
    2923482
  • Title

    Recent results on sparse principle component analysis

  • Author

    Cai, Tony T. ; Zongming Ma ; Yihong Wu

  • Author_Institution
    Dept. of Stat., Univ. of Pennsylvania, Philadelphia, PA, USA
  • fYear
    2013
  • fDate
    15-18 Dec. 2013
  • Firstpage
    181
  • Lastpage
    183
  • Abstract
    Principal component analysis (PCA) is one of the most commonly used statistical procedures for dimension reduction. This paper presents some recent results on the minimax estimation of principal subspaces in high dimensions. Under mild technical conditions, we characterize the minimax risk for estimating the principal subspace under the quadratic loss within absolute constant factors.
  • Keywords
    data reduction; minimax techniques; principal component analysis; risk management; PCA; Sparse Principle Component Analysis; dimension reduction; minimax risk; multivariate analysis; principal subspace minimax estimation; quadratic loss; statistical procedures; Conferences; Convergence; Covariance matrices; Eigenvalues and eigenfunctions; Estimation; Principal component analysis; Sociology;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on
  • Conference_Location
    St. Martin
  • Print_ISBN
    978-1-4673-3144-9
  • Type

    conf

  • DOI
    10.1109/CAMSAP.2013.6714037
  • Filename
    6714037