DocumentCode
2923482
Title
Recent results on sparse principle component analysis
Author
Cai, Tony T. ; Zongming Ma ; Yihong Wu
Author_Institution
Dept. of Stat., Univ. of Pennsylvania, Philadelphia, PA, USA
fYear
2013
fDate
15-18 Dec. 2013
Firstpage
181
Lastpage
183
Abstract
Principal component analysis (PCA) is one of the most commonly used statistical procedures for dimension reduction. This paper presents some recent results on the minimax estimation of principal subspaces in high dimensions. Under mild technical conditions, we characterize the minimax risk for estimating the principal subspace under the quadratic loss within absolute constant factors.
Keywords
data reduction; minimax techniques; principal component analysis; risk management; PCA; Sparse Principle Component Analysis; dimension reduction; minimax risk; multivariate analysis; principal subspace minimax estimation; quadratic loss; statistical procedures; Conferences; Convergence; Covariance matrices; Eigenvalues and eigenfunctions; Estimation; Principal component analysis; Sociology;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on
Conference_Location
St. Martin
Print_ISBN
978-1-4673-3144-9
Type
conf
DOI
10.1109/CAMSAP.2013.6714037
Filename
6714037
Link To Document