DocumentCode :
2924083
Title :
Armstrong systems and Galois connections
Author :
Kondo, Michiro ; Soneda, Sho ; Yoshii, Bunpei
Author_Institution :
Sch. of Inf. Environ., Tokyo Denki Univ., Inzai, Japan
fYear :
2011
fDate :
8-10 Nov. 2011
Firstpage :
342
Lastpage :
344
Abstract :
In the paper [1], it is proved that any Galois connection (f, g) on a complete lattice made an Armstrong system F(f, g). We prove in this short note that the converse holds, that is, for a given Armstrong system R, we can make a Galois connection (φR, ψR) and the original Armstrong system R is identical with the induced Armstrong system F(φR, ψR) by the Galois connection (φR, ψR). This means that Armstrong systems and Galois connections show us two faces of one thing.
Keywords :
Galois fields; set theory; Armstrong systems; Galois connections; Conferences; Educational institutions; Electronic mail; Information systems; Lattices; Armstrong system; Galois connection; complete lattice; data-base; order-reversing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing (GrC), 2011 IEEE International Conference on
Conference_Location :
Kaohsiung
Print_ISBN :
978-1-4577-0372-0
Type :
conf
DOI :
10.1109/GRC.2011.6122619
Filename :
6122619
Link To Document :
بازگشت