DocumentCode :
2925013
Title :
Neural networks applied for fault diagnosis of AC motors
Author :
Rao, K. S Rama ; Yahya, Muhammad Ariff
Author_Institution :
Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Volume :
4
fYear :
2008
fDate :
26-28 Aug. 2008
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents an Artificial Neural Network (ANN) technique to recognize the incipient faults of an AC motor such as a synchronous motor. The proposed ANN-based fault detector is developed using the Resilient Error Back Propagation (RPROP) training algorithm. The fast and reliable method for multilayer neural networks converges much faster than the conventional back propagation algorithm. The main causes to diagnose three major faults are investigated and validated by adopting feed-forward back propagation neural networks.
Keywords :
AC motors; Artificial neural networks; Condition monitoring; Fault detection; Fault diagnosis; Induction motors; Insulation; Multi-layer neural network; Neural networks; Synchronous motors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology, 2008. ITSim 2008. International Symposium on
Conference_Location :
Kuala Lumpur, Malaysia
Print_ISBN :
978-1-4244-2327-9
Electronic_ISBN :
978-1-4244-2328-6
Type :
conf
DOI :
10.1109/ITSIM.2008.4631918
Filename :
4631918
Link To Document :
بازگشت