• DocumentCode
    2927477
  • Title

    Notice of Violation of IEEE Publication Principles
    A Quadratic Particle Swarm Optimization for Weight Optimization

  • Author

    Jing, He ; Dejia, Shi ; Li, Wang

  • Author_Institution
    Sch. of Comput. & Electron. Eng., Hunan Univ. of Commerce, Changsha, China
  • Volume
    3
  • fYear
    2009
  • fDate
    21-22 Nov. 2009
  • Firstpage
    557
  • Lastpage
    560
  • Abstract
    Notice of Violation of IEEE Publication Principles

    "A Quadratic Particle Swarm Optimization for Weight Optimization"
    by He Jing, Shi Dejia, and Wang Li
    in the Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application (IITA 2009), November 2009, pp. 557-560

    After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE\´s Publication Principles.

    This paper contains significant portions of original text from the papers cited below. The original text was copied without attribution (including appropriate references to the original author(s) and/or paper titles) and without permission.

    Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following articles:

    "A New Optimization Algorithm for Weight Optimization"
    by Hui Li and Xuesong Yan
    in Lecture Notes in Computer Science, Volume 5370, Springer, 2008, pp. 723-730

    Particle Swarm Optimization algorithm was developed under the inspiration of behavior laws of bird flocks, fish schools and human communities. Aiming at the disadvantages of Particle Swarm Optimization algorithm like being trapped easily into a local optimum, this paper improves the standard PSO and proposes a new algorithm to solve the overcomes of the standard PSO. This paper improved the standard PSO\´s evolution equation on the foundation of analyzing standard PSO\´s model and its mechanisms, and then presents a Quadratic PSO. The simulation illustrates the Quadratic PSO improves the performance of the PSO We use the new algorithm for the weight optimization in college student evaluation, and compared with PSO; the results show that the new algorithm is efficient.
  • Keywords
    particle swarm optimisation; college student evaluation; quadratic particle swarm optimization; weight optimization; Application software; Birds; Business; Educational institutions; Electron traps; Helium; Humans; Information technology; Marine animals; Particle swarm optimization; Particle Swarm Optimization; Quadratic; Weight Optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on
  • Conference_Location
    Shanghai
  • Print_ISBN
    978-0-7695-3859-4
  • Type

    conf

  • DOI
    10.1109/IITA.2009.510
  • Filename
    5370008