DocumentCode :
2931900
Title :
Statistical path loss parameter estimation and positioning using RSS measurements
Author :
Nurminen, Henri ; Talvitie, Jukka ; Ali-Loytty, Simo ; Muller, Philipp ; Lohan, E. ; Piche, Robert ; Renfors, Markku
Author_Institution :
Tampere Univ. of Technol., Tampere, Finland
fYear :
2012
fDate :
3-4 Oct. 2012
Firstpage :
1
Lastpage :
8
Abstract :
An efficient Bayesian method for off-line estimation of the position and the path loss model parameters of a base station is presented. Two versions of three different on-line positioning methods are tested using real data collected from a cellular network. The tests confirm the superiority of the methods that use the estimated path loss parameter distributions compared to the conventional methods that only use point estimates for the path loss parameters. Taking the uncertainties into account is computationally demanding, but the Gauss-Newton optimization methods is shown to provide a good approximation with computational load that is reasonable for many real-time solutions.
Keywords :
cellular radio; optimisation; parameter estimation; statistical analysis; Gauss-Newton optimization methods; RSS measurements; base station; model parameters; path loss parameter distributions; real-time solutions; statistical path loss parameter estimation; statistical path positioning; Antenna measurements; Computational modeling; Covariance matrix; Estimation; Loss measurement; Power measurement; Propagation losses; cellular network; outdoor positioning; path loss model; received signal strength; statistical estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS), 2012
Conference_Location :
Helsinki
Print_ISBN :
978-1-4673-1908-9
Type :
conf
DOI :
10.1109/UPINLBS.2012.6409754
Filename :
6409754
Link To Document :
بازگشت