DocumentCode :
2932244
Title :
Entropy Minimization SLAM Using Stereo Vision
Author :
Saez, Juan Manuel ; Escolano, Francisco
Author_Institution :
Robot Vision Group Departamento de Ciencia de la Computación e Inteligencia Artificial Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain jmsaez@dccia.ua.es
fYear :
2005
fDate :
18-22 April 2005
Firstpage :
36
Lastpage :
43
Abstract :
In this paper we present an information-based approach to solve the SLAM problem using stereo vision. This approach results for an improvement, in terms of both efficiency and robustness, of our early multi-view ICP randomized algorithm. Instead of minimizing an ICP-based cost, we propose the minimization of the entropy of the 2D distribution induced by the projection of the 3D point cloud. In addition we embed both the egomotion/action estimation algorithm which precedes global rectification and the new global rectification algorithm in an autonomous exploration schema. We assume plane-parallel environments and, for the sake of efficiency, we also assume a flat floor and a fixed stereo camera mounted on the robot. We show successful experiments both under tele-operating the robot and under autonomous navigation.
Keywords :
3D Mapping; Entropy Minimization; Navigation; SLAM; Stereo Vision; Cameras; Clouds; Costs; Entropy; Iterative closest point algorithm; Navigation; Robot vision systems; Robustness; Simultaneous localization and mapping; Stereo vision; 3D Mapping; Entropy Minimization; Navigation; SLAM; Stereo Vision;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on
Print_ISBN :
0-7803-8914-X
Type :
conf
DOI :
10.1109/ROBOT.2005.1570093
Filename :
1570093
Link To Document :
بازگشت