DocumentCode
2932908
Title
A lower bound for perceptrons and an oracle separation of the PP PH hierarchy
Author
Berg, Christer ; Ulfberg, Staffan
Author_Institution
Dept. of Numerical Anal. & Comput. Sci., R. Inst. of Technol., Stockholm, Sweden
fYear
1997
fDate
24-27 Jun 1997
Firstpage
165
Lastpage
172
Abstract
We show that there are functions computable by linear size boolean circuits of depth k that require superpolynomial size perceptrons of depth k-1, for k<log n/(6 log log n). This result implies the existence of an oracle A such that Σkp,A⊄PPΣ(k-2 p,A) and in particular this oracle separates the levels in the PPPH hierarchy. Using the same ideas, we show a lower bound for another function, which makes it possible to strengthen the oracle separation to Δkp,A⊄PPΣ(k-2 p,A)
Keywords
Boolean functions; computational complexity; logic circuits; perceptrons; PPPH hierarchy; linear size boolean circuits; lower bound; oracle separation; perceptrons; superpolynomial size perceptrons; Circuits; Ear; Numerical analysis; Polynomials;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational Complexity, 1997. Proceedings., Twelfth Annual IEEE Conference on (Formerly: Structure in Complexity Theory Conference)
Conference_Location
Ulm
ISSN
1093-0159
Print_ISBN
0-8186-7907-7
Type
conf
DOI
10.1109/CCC.1997.612312
Filename
612312
Link To Document