DocumentCode :
2936453
Title :
A Study on the Evaluation of Relevance Feedback in Multi-tagged Image Datasets
Author :
Tronci, Roberto ; Falqui, Luisa ; Piras, Luca ; Giacinto, Giorgio
Author_Institution :
Amilab - Lab. Intell. d´´Ambiente, Pula, Italy
fYear :
2011
fDate :
5-7 Dec. 2011
Firstpage :
452
Lastpage :
457
Abstract :
This paper proposes a study on the evaluation of relevance feedback approaches when a multi-tagged dataset is available. The aim of this study is to verify how the relevance feedback works in a real-word scenario, i.e. by taking into account the multiple concepts represented by the query image. To this end, we first assessed how relevance feedback mechanisms adapt the search when the same image is used for retrieving different concepts. Then, we investigated the scenarios in which the same image is used for retrieving multiple concepts. The experimental results shows that relevance feedback can effectively focus the search according to the user´s feedback even if the query image provides a rough example of the target concept. We also propose two performance measures aimed at comparing the accuracy of retrieval results when the same image is used as a prototype for a number of different concepts.
Keywords :
image retrieval; relevance feedback; multitagged image datasets; query image; real-word scenario; relevance feedback; Correlation; Histograms; Image color analysis; Radio frequency; Support vector machines; Testing; Visualization; content based image retrieval; correlation measures; relevance feedback;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia (ISM), 2011 IEEE International Symposium on
Conference_Location :
Dana Point CA
Print_ISBN :
978-1-4577-2015-4
Type :
conf
DOI :
10.1109/ISM.2011.80
Filename :
6123388
Link To Document :
بازگشت