DocumentCode
293679
Title
A distribution independent algorithm for the reduction to tridiagonal form using one-sided rotations
Author
Hegland, Markus
Author_Institution
Res. Sch. for Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT, Australia
Volume
1
fYear
1995
fDate
19-21 Apr 1995
Firstpage
286
Abstract
A scalable algorithm for the reduction to tridiagonal form of symmetric matrices is developed. It uses one-sided rotations instead of similarity transforms. This allows a data distribution independent implementation with low communication volume. Timings on the Fujitsu AP 1000 and VPP 500 show good performance
Keywords
eigenvalues and eigenfunctions; mathematics computing; matrix algebra; parallel processing; Fujitsu AP 1000; VPP 500; data distribution independent implementation; distribution independent algorithm; low communication volume; one-sided rotations; symmetric matrices; tridiagonal form reduction; Algorithms; Artificial intelligence; Concurrent computing; Costs; Eigenvalues and eigenfunctions; Jacobian matrices; Libraries; Sparse matrices; Symmetric matrices; Timing;
fLanguage
English
Publisher
ieee
Conference_Titel
Algorithms and Architectures for Parallel Processing, 1995. ICAPP 95. IEEE First ICA/sup 3/PP., IEEE First International Conference on
Conference_Location
Brisbane, Qld.
Print_ISBN
0-7803-2018-2
Type
conf
DOI
10.1109/ICAPP.1995.472197
Filename
472197
Link To Document