DocumentCode :
2937135
Title :
Approximate robust Optimal Experiment Design in dynamic bioprocess models
Author :
Telen, Dries ; Logist, Filip ; Derlinden, Eva Van ; Impe, Jan Van
Author_Institution :
Dept. of Chem. Eng., KU Leuven, Heverlee, Belgium
fYear :
2012
fDate :
3-6 July 2012
Firstpage :
157
Lastpage :
162
Abstract :
In dynamic bioprocess models parameters often appear in a nonlinear way. When designing optimal experiments to calibrate these models, the Fisher Information Matrix explicitly depends on the current parameter estimates. Hence, it is advisable to take this parametric uncertainty into account in the design procedure in order to obtain an experiment which is robust with respect to changes in the parameters. The current paper applies computationally efficient approximate robustification strategies based on a worst case scenario. Both methods exploit linearisation techniques to avoid the hard to solve max-min optimisation problems. The methods will be illustrated on a predictive microbiology case study.
Keywords :
approximation theory; biology; biotechnology; design of experiments; linearisation techniques; nonlinear dynamical systems; optimal control; parameter estimation; robust control; Fisher information matrix; approximate robust optimal experiment design; approximate robustifcation strategies; dynamic bioprocess model parameter; linearisation techniques; parameter estimation; parametric uncertainty; predictive microbiology; worst case scenario; Equations; Mathematical model; Optimal control; Optimization; Robustness; Sensitivity; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control & Automation (MED), 2012 20th Mediterranean Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4673-2530-1
Electronic_ISBN :
978-1-4673-2529-5
Type :
conf
DOI :
10.1109/MED.2012.6265631
Filename :
6265631
Link To Document :
بازگشت