DocumentCode :
2939950
Title :
Reducing FPGA algorithm area by avoiding redundant computation
Author :
Axelrod, Brian ; Laverne, Michel
Author_Institution :
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2015
fDate :
26-30 May 2015
Firstpage :
503
Lastpage :
508
Abstract :
We develop a new paradigm for designing fully streaming, area-efficient FPGA implementations of common building blocks for vision algorithm. By focusing on avoiding redundant computation we achieve a reduction of one to two orders of magnitude reduction in design area utilization as compared to previous implementations. We demonstrate that our design works in practice by building five 325 frames per second, high resolution Harris corner detection cores onto a single FPGA.
Keywords :
field programmable gate arrays; robot vision; FPGA algorithm area reduction; field-programmable gate arrays; high resolution Harris corner detection cores; magnitude reduction; redundant computation avoidance; vision algorithm; Algorithm design and analysis; Computer vision; Convolution; Field programmable gate arrays; Kernel; Pipeline processing; Accelerator; Convolution; FPGA; Harris Corner; Non-Max Suppression; Vision;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2015 IEEE International Conference on
Conference_Location :
Seattle, WA
Type :
conf
DOI :
10.1109/ICRA.2015.7139226
Filename :
7139226
Link To Document :
بازگشت