DocumentCode :
2940301
Title :
Development of Kernel Fisher Discriminant Model Using the Cross-Entropy Method
Author :
Santosa, Budi ; Sunarto, Andiek
Author_Institution :
Dept. of Ind. Eng., Inst. Teknol. Sepuluh Nopember (ITS), Surabaya, Indonesia
fYear :
2009
fDate :
4-7 Dec. 2009
Firstpage :
691
Lastpage :
694
Abstract :
In this paper, the cross-entropy (CE) method is proposed to solve non-linear discriminant analysis or kernel Fisher discriminant (CE-KFD) analysis. CE through certain steps can find the optimal or near optimal solution with a fast rate of convergence for optimization problem. While, KFD is to solve problem of Fisher´s linear discriminant in a kernel feature space F by maximizing between class variance and minimizing within class variance. Through the numerical experiments, we found that CE-KFD demonstrates the high accuracy of the results compared to the traditional methods, Fisher LDA and kernel Fisher (KFD) with eigen decomposition method.
Keywords :
eigenvalues and eigenfunctions; entropy; optimisation; Fisher LDA; class variance; cross-entropy method; eigen decomposition method; kernel Fisher discriminant model; nonlinear discriminant analysis; optimization problem; Computer graphics; Curve fitting; Data mining; Image segmentation; Information science; Iterative algorithms; Kernel; Pattern recognition; Phase detection; Shape; accuracy; cross entropy; discriminant analysis; eigen decomposition; kernel method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Soft Computing and Pattern Recognition, 2009. SOCPAR '09. International Conference of
Conference_Location :
Malacca
Print_ISBN :
978-1-4244-5330-6
Electronic_ISBN :
978-0-7695-3879-2
Type :
conf
DOI :
10.1109/SoCPaR.2009.138
Filename :
5370958
Link To Document :
بازگشت