• DocumentCode
    2941002
  • Title

    Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes

  • Author

    Gaborit, Philippe ; Zemor, Gilles

  • Author_Institution
    XLIM, Limoges Univ.
  • fYear
    2006
  • fDate
    9-14 July 2006
  • Firstpage
    287
  • Lastpage
    291
  • Abstract
    The Gilbert-Varshamov bound states that the maximum size A2 (n,d) of a binary code of length n and minimum distance d satisfies A2(n,d)ges2n/V(n,d-1) where V(n,d)=XiEdi=0 (Eni) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound could be improved to A2(n,d)gescn2n/V(n,d -1) for c a constant and d/nles0.499. In this paper we show that certain asymptotic families of linear binary [n, n/2] double circulant codes satisfy the same improved Gilbert-Varshamov bound
  • Keywords
    Hamming codes; binary codes; linear codes; Gilbert-Varshamov bound; Hamming ball; binary linear codes; double circulant codes; Binary codes; Graph theory; H infinity control; Hamming distance; Linear code; Welding; Double circulant codes; Gilbert-Varshamov; bound; linear codes; random coding;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 2006 IEEE International Symposium on
  • Conference_Location
    Seattle, WA
  • Print_ISBN
    1-4244-0505-X
  • Electronic_ISBN
    1-4244-0504-1
  • Type

    conf

  • DOI
    10.1109/ISIT.2006.261851
  • Filename
    4035968