DocumentCode
2941002
Title
Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes
Author
Gaborit, Philippe ; Zemor, Gilles
Author_Institution
XLIM, Limoges Univ.
fYear
2006
fDate
9-14 July 2006
Firstpage
287
Lastpage
291
Abstract
The Gilbert-Varshamov bound states that the maximum size A2 (n,d) of a binary code of length n and minimum distance d satisfies A2(n,d)ges2n/V(n,d-1) where V(n,d)=XiEdi=0 (Eni) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound could be improved to A2(n,d)gescn2n/V(n,d -1) for c a constant and d/nles0.499. In this paper we show that certain asymptotic families of linear binary [n, n/2] double circulant codes satisfy the same improved Gilbert-Varshamov bound
Keywords
Hamming codes; binary codes; linear codes; Gilbert-Varshamov bound; Hamming ball; binary linear codes; double circulant codes; Binary codes; Graph theory; H infinity control; Hamming distance; Linear code; Welding; Double circulant codes; Gilbert-Varshamov; bound; linear codes; random coding;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Theory, 2006 IEEE International Symposium on
Conference_Location
Seattle, WA
Print_ISBN
1-4244-0505-X
Electronic_ISBN
1-4244-0504-1
Type
conf
DOI
10.1109/ISIT.2006.261851
Filename
4035968
Link To Document