• DocumentCode
    2944219
  • Title

    Fourier Transforms from a Weighted Trace Map

  • Author

    Horadam, K.J. ; Rao, A.

  • Author_Institution
    SMGS, RMIT Univ., Melbourne, Vic.
  • fYear
    2006
  • fDate
    9-14 July 2006
  • Firstpage
    1080
  • Lastpage
    1084
  • Abstract
    The class of generalised Hadamard transforms includes the Fourier, generalised, discrete Fourier, Walsh-Hadamard, complex Hadamard and reverse jacket transforms. The generalised Hadamard transforms may by partly classified by signal length, by group of entries in the transform matrix and by a recently introduced third parameter, the jacket width of the transform matrix. Here we introduce a weighted trace map, which realises the Fourier transform as an exponential weighted sum of Galois ring traces. We give examples of Fourier transforms with jacket width 0, jacket width 1 and maximum jacket width (half the signal length). We show the Fourier transforms of length 4k with entries in {plusmn1, plusmni} obtained using the weighted trace map from the Galois ring GR(4,k) have jacket width 2k-1
  • Keywords
    Fourier transforms; Galois fields; Fourier transforms; Galois ring traces; exponential weighted sum; weighted trace map; Australia; Discrete Fourier transforms; Discrete transforms; Error correction; Error correction codes; Fast Fourier transforms; Fourier transforms; Image coding; Mathematics; Switches;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 2006 IEEE International Symposium on
  • Conference_Location
    Seattle, WA
  • Print_ISBN
    1-4244-0505-X
  • Electronic_ISBN
    1-4244-0504-1
  • Type

    conf

  • DOI
    10.1109/ISIT.2006.261950
  • Filename
    4036131