DocumentCode :
294562
Title :
Using explicit segmentation to improve HMM phone recognition
Author :
Mitchell, Carl D. ; Harper, Mary P. ; Jamieson, Leah H.
Author_Institution :
Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA
Volume :
1
fYear :
1995
fDate :
9-12 May 1995
Firstpage :
229
Abstract :
We show that many of the errors in a context-dependent phone recognition system are due to poor segmentation. We then suggest a method to incorporate explicit segmentation information directly into the HMM paradigm. The utility of explicit segmentation information is illustrated with experiments involving five types of segmentation information and three methods of smoothing
Keywords :
hidden Markov models; smoothing methods; speech processing; speech recognition; HMM phone recognition; context-dependent phone recognition system; experiments; explicit segmentation; segmentation information; smoothing methods; Acoustic measurements; Cepstral analysis; Context modeling; Cost function; Data mining; Discrete transforms; Hidden Markov models; Smoothing methods; Speech recognition; Upper bound; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on
Conference_Location :
Detroit, MI
ISSN :
1520-6149
Print_ISBN :
0-7803-2431-5
Type :
conf
DOI :
10.1109/ICASSP.1995.479406
Filename :
479406
Link To Document :
بازگشت