DocumentCode :
2945808
Title :
Guaranteed bounds for traffic flow parameters estimation using mixed Lagrangian-Eulerian sensing
Author :
Claudel, Christian G. ; Bayen, Alexandre M.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA
fYear :
2008
fDate :
23-26 Sept. 2008
Firstpage :
636
Lastpage :
645
Abstract :
This article proposes a new method combining convex optimization and viability theory for estimating traffic flow conditions on highway segments. Traffic flow is modeled by a Hamilton-Jacobi equation. Using a Lax-Hopf formula, we formulate the necessary and sufficient conditions for a mixed boundary and internal conditions problem to be well posed. The well-posedness conditions result in a system of linear inequalities, which enables us to compute upper and lower bounds on traffic flow parameters as the solution to a linear program. We illustrate the capabilities of the method with a data assimilation problem for the estimation of the travel time function using Eulerian and Lagrangian measurements generated from Next Generation Simulation (NGSIM) traffic data.
Keywords :
electric sensing devices; parameter estimation; partial differential equations; road traffic; Hamilton-Jacobi equation; Lagrangian-Eulerian sensing; Next Generation Simulation traffic data; convex optimization; data assimilation; highway segments; traffic flow parameters estimation; travel time function; viability theory; Data assimilation; Equations; Estimation theory; Lagrangian functions; Optimization methods; Parameter estimation; Road transportation; Sufficient conditions; Time measurement; Traffic control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communication, Control, and Computing, 2008 46th Annual Allerton Conference on
Conference_Location :
Urbana-Champaign, IL
Print_ISBN :
978-1-4244-2925-7
Electronic_ISBN :
978-1-4244-2926-4
Type :
conf
DOI :
10.1109/ALLERTON.2008.4797618
Filename :
4797618
Link To Document :
بازگشت