DocumentCode :
294593
Title :
Optimal linear feature transformations for semi-continuous hidden Markov models
Author :
Schukat-Talamazzini, E. Günter ; Hornegger, Joachim ; Niemann, Heinrich
Author_Institution :
Friedrich-Alexander Univ., Erlangen, Germany
Volume :
1
fYear :
1995
fDate :
9-12 May 1995
Firstpage :
369
Abstract :
Linear discriminant or Karhunen-Loeve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a maximum-likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slight improvement of the recognition accuracy
Keywords :
feature extraction; hidden Markov models; maximum likelihood estimation; optimisation; speech recognition; statistical analysis; transforms; Karhunen-Loeve transforms; experimental evaluation; linear discriminant transforms; linear selection methods; lower dimensional subspace; maximum-likelihood estimation; optimal linear feature transformations; recognition accuracy; semi-continuous hidden Markov models; uniform statistical framework; Continuous production; Feature extraction; Hidden Markov models; Karhunen-Loeve transforms; Labeling; Maximum likelihood estimation; Parameter estimation; Speech processing; Speech recognition; Vectors; Yttrium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on
Conference_Location :
Detroit, MI
ISSN :
1520-6149
Print_ISBN :
0-7803-2431-5
Type :
conf
DOI :
10.1109/ICASSP.1995.479598
Filename :
479598
Link To Document :
بازگشت