• DocumentCode
    2946665
  • Title

    Reed-Solomon group codes

  • Author

    Zain, A.A. ; Rajan, B. Sundar

  • Author_Institution
    Dept. of Electr. Eng., Indian Inst. of Technol., Delhi, India
  • fYear
    1995
  • fDate
    17-22 Sep 1995
  • Firstpage
    495
  • Abstract
    Reed-Solomon codes over GF(pm), p a prime and m a positive integer, are cyclic maximum distance separable (MDS) and of length pm-1. The additive group of GF(pm) is elementary abelian of type (1,1,...,1), isomorphic to a direct product of m cyclic groups of order p, denoted by Cpm. This paper deals with MDS codes over Cpm of length pm-1 which are cyclic and MDS, called Reed-Solomon group codes. In general, a group code over Cpm need not be a linear code over GF(pm) as shown by an example
  • Keywords
    Galois fields; Reed-Solomon codes; cyclic codes; MDS codes; Reed-Solomon codes; additive group; cyclic codes; elementary abelian group; group codes; maximum distance separable codes; Chromium; Discrete Fourier transforms; Discrete transforms; Galois fields; Linear code; Polynomials; Power generation; Reed-Solomon codes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on
  • Conference_Location
    Whistler, BC
  • Print_ISBN
    0-7803-2453-6
  • Type

    conf

  • DOI
    10.1109/ISIT.1995.550483
  • Filename
    550483