DocumentCode :
2946811
Title :
SWM : a class of convex contrasts for source separation
Author :
Vrins, Frédéric ; Verleysen, Michel ; Jutten, Christian
Author_Institution :
UCL Machine Learning Group, Univ. catholique de Louvain, Louvain-la-Neuve, Belgium
Volume :
5
fYear :
2005
fDate :
18-23 March 2005
Abstract :
We derive a class of contrasts for blind source separation (BSS) to separate bounded sources (or more generally, finite sources), based on support width measures (SWM) of the marginal output distributions. These contrasts are shown to have no spurious local maxima, i.e., all the local maxima are relevant from the source separation point of view; they all correspond to non-mixing BSS solutions so that a gradient-ascent method can be used.
Keywords :
blind source separation; gradient methods; BSS; blind source separation; convex contrasts; gradient-ascent method; support width measures; Blind source separation; Gaussian distribution; Independent component analysis; Machine learning; Scattering; Source separation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1416265
Filename :
1416265
Link To Document :
بازگشت