Title :
Motion generation of robotic surgical tasks: Learning from expert demonstrations
Author :
Reiley, Carol E. ; Plaku, Erion ; Hager, Gregory D.
Author_Institution :
Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA
fDate :
Aug. 31 2010-Sept. 4 2010
Abstract :
Robotic surgical assistants offer the possibility of automating portions of a task that are time consuming and tedious in order to reduce the cognitive workload of a surgeon. This paper proposes using programming by demonstration to build generative models and generate smooth trajectories that capture the underlying structure of the motion data recorded from expert demonstrations. Specifically, motion data from Intuitive Surgical´s da Vinci Surgical System of a panel of expert surgeons performing three surgical tasks are recorded. The trials are decomposed into subtasks or surgemes, which are then temporally aligned through dynamic time warping. Next, a Gaussian Mixture Model (GMM) encodes the experts´ underlying motion structure. Gaussian Mixture Regression (GMR) is then used to extract a smooth reference trajectory to reproduce a trajectory of the task. The approach is evaluated through an automated skill assessment measurement. Results suggest that this paper presents a means to (i) important features of the task, (ii) create a metric to evaluate robot imitative performance (iii) generate smoother trajectories for reproduction of three common medical tasks.
Keywords :
Gaussian processes; biomechanics; biomedical optical imaging; feature extraction; image motion analysis; medical image processing; medical robotics; regression analysis; surgery; video coding; video signal processing; Gaussian mixture model; Gaussian mixture regression; Intuitive Surgical da Vinci Surgical System; automated skill assessment measurement; decomposition; dynamic time warping; encoding; feature extraction; generative models; motion generation; programming; robotic surgical assistants; robotic surgical tasks; smooth reference trajectory extraction; smooth trajectories; Feature extraction; Hidden Markov models; Robots; Surgery; Surges; Training; Trajectory; Expert Systems; Humans; Man-Machine Systems; Motion; Professional Competence; Robotics; Surgery, Computer-Assisted; User-Computer Interface;
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE
Conference_Location :
Buenos Aires
Print_ISBN :
978-1-4244-4123-5
DOI :
10.1109/IEMBS.2010.5627594