DocumentCode :
2947704
Title :
An improvement to the natural gradient learning algorithm for multilayer perceptrons
Author :
Bastian, Michael R. ; Gunther, Jacob H. ; Moon, Todd K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA
Volume :
5
fYear :
2005
fDate :
18-23 March 2005
Abstract :
Natural gradient learning has been shown to avoid singularities in the parameter space of multilayer perceptrons. However, it requires a large number of additional parameters beyond ordinary backpropagation. The article describes a new approach to natural gradient learning in which the number of parameters necessary is much smaller than in the natural gradient algorithm. This new method exploits the algebraic structure of the parameter space to reduce the space and time complexity of the algorithm and improve its performance.
Keywords :
computational complexity; gradient methods; learning (artificial intelligence); multilayer perceptrons; backpropagation; multilayer perceptrons; natural gradient learning algorithm; parameter space; space complexity; time complexity; Backpropagation algorithms; Computer networks; Jacobian matrices; Moon; Multilayer perceptrons; Noise robustness; Random variables; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1416303
Filename :
1416303
Link To Document :
بازگشت