• DocumentCode
    294790
  • Title

    Unsupervised Bayesian segmentation using hidden Markovian fields

  • Author

    Salzenstein, F. ; Pieczynski, W.

  • Author_Institution
    Dept. Signal et Image, Inst. Nat. des Telecommun., Evry, France
  • Volume
    4
  • fYear
    1995
  • fDate
    9-12 May 1995
  • Firstpage
    2411
  • Abstract
    The aim of our paper is to present a new unsupervised Bayesian image segmentation method using a recent model by hidden fuzzy Markov fields. The main problem of parameter estimation is solved using a recent general method of estimation regarding hidden data, called iterative conditional estimation (ICE). This has been successfully applied in classical hidden Markov fields based segmentations. The first part of our work involves estimating the parameters defining the Markovian distribution of the fuzzy picture without noise. We then combine this algorithm with the ICE method in order to estimate all the parameters of the noisy picture
  • Keywords
    Bayes methods; fuzzy systems; hidden Markov models; image segmentation; iterative methods; parameter estimation; unsupervised learning; Markovian distribution; fuzzy picture; hidden fuzzy Markov field; image segmentation; iterative conditional estimation; noisy picture; parameter estimation; unsupervised Bayesian segmentation; Bayesian methods; Cities and towns; Density measurement; Fuzzy sets; Hidden Markov models; Ice; Image segmentation; Iterative algorithms; Iterative methods; Parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on
  • Conference_Location
    Detroit, MI
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-2431-5
  • Type

    conf

  • DOI
    10.1109/ICASSP.1995.479979
  • Filename
    479979