DocumentCode :
295188
Title :
Dynamic pole assignment for systems in generalized first order form: a report on results derived by algebro-geometric techniques
Author :
Ravi, M.S. ; Hal, Joachim Rosent ; Wang, Xiaochang Alex
Author_Institution :
Dept. of Math., East Carolina Univ., Greenville, NC, USA
Volume :
2
fYear :
1995
fDate :
13-15 Dec 1995
Firstpage :
1900
Abstract :
In this paper we study the eigenvalue assignment problem of a generalized linear system using a real dynamic compensator of a bounded McMillan degree. Using algebro-geometric techniques we report on several new sufficiency conditions for the problem of a real compensator design
Keywords :
compensation; eigenvalues and eigenfunctions; geometry; matrix algebra; pole assignment; algebro-geometric techniques; bounded McMillan degree; dynamic pole assignment; eigenvalue assignment problem; generalized first-order form; generalized linear system; real compensator design; real dynamic compensator; Control systems; Control theory; Eigenvalues and eigenfunctions; Equations; Linear systems; Mathematics; Output feedback; Polynomials; State feedback; State-space methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.480621
Filename :
480621
Link To Document :
بازگشت