• DocumentCode
    2951920
  • Title

    State Variables Estimation Using Particle Filter: Experimental Comparison with Kalman Filter

  • Author

    del Toro Peral, M. ; Bravo, Fernando Gómez ; MartinhoVale, Alberto

  • Author_Institution
    Huelva Univ., Huelva
  • fYear
    2007
  • fDate
    3-5 Oct. 2007
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    Within the probabilistic methods for the state estimation of a dynamic system, the particle filter approach is an innovative technique which is focusing the attention of current researches. Particle filtering succeeds in applying to different type of systems (linear and non-linear) and noise models. This paper presents a comparison between the results obtained using the particle Filter and the Kalman Filter for estimating the orientation and velocity of a DC motor. Real experiments are also presented.
  • Keywords
    DC motors; Kalman filters; machine control; probability; state estimation; velocity control; DC motor velocity; Kalman filter; particle filtering; probabilistic method; state variable estimation; Control systems; DC motors; Filtering; Gaussian noise; Kalman filters; Particle filters; Particle measurements; Sensor systems; State estimation; Uncertainty; Kalman Fikter; Particle Filter; State Estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on
  • Conference_Location
    Alcala de Henares
  • Print_ISBN
    978-1-4244-0829-0
  • Electronic_ISBN
    978-1-4244-0830-6
  • Type

    conf

  • DOI
    10.1109/WISP.2007.4447543
  • Filename
    4447543