DocumentCode :
295201
Title :
On the stability of Maslov optimization processes
Author :
Del Moral, P.
Author_Institution :
Lab. d´´Autom. et d´´Anal. des Syst., CNRS, Toulouse, France
Volume :
2
fYear :
1995
fDate :
13-15 Dec 1995
Firstpage :
1999
Abstract :
This paper examines the stability of nonlinear systems involving optimization variables. The approach develops some natural Liapunov functions for the study of optimization processes in the same way as stochastic Liapunov functions for Markov stochastic processes. More precisely, an optimization Liapunov function is defined as a suitable function of the state of an optimization process in the sense of Maslov (1986, 1987) which possesses the corresponding (max,+)-supermartingale property
Keywords :
Lyapunov methods; nonlinear systems; optimisation; stability; (max,+)-supermartingale property; Markov stochastic processes; Maslov optimization process stability; natural Lyapunov functions; nonlinear systems; optimization Lyapunov function; Density measurement; Ethics; Extraterrestrial measurements; Q measurement; Stability; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.480641
Filename :
480641
Link To Document :
بازگشت