Title :
Thermal stability of ultra-thin InGaAs-on-insulator substrates
Author :
Daix, N. ; Czornomaz, L. ; Caimi, D. ; Rossel, C. ; Sousa, M. ; Fompeyrine, J.
Author_Institution :
IBM Res. - Zurich, Rüschlikon, Switzerland
Abstract :
Ultra-thin-body on buried oxide (UTBB) InGaAs are promising layers for the next generation of transistors. One way to fabricate InGaAs layer on Si or SiGe substrates is the direct wafer bonding technique with ion implantation and thermal splitting. We have investigated the bonding energy of two possible candidates for the buried oxide (BOX), Al2O3 and SiO2, between room temperature and 450°C. Then we have compared the properties of InAlAs, InP and InGaAs buffers for the implantation and splitting processes.
Keywords :
III-V semiconductors; aluminium compounds; buried layers; gallium arsenide; indium compounds; semiconductor doping; silicon compounds; thermal stability; wafer bonding; Al2O3; InAlAs; InGaAs; InP; SiO2; UTBB; direct wafer bonding technique; implantation process; ion implantation; splitting process; thermal splitting; thermal stability; ultrathin body on buried oxide; ultrathin substrates; Bonding; Indium gallium arsenide; Indium phosphide; Silicon; Substrates; Thermal stability;
Conference_Titel :
SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2013 IEEE
Conference_Location :
Monterey, CA
DOI :
10.1109/S3S.2013.6716558