• DocumentCode
    295237
  • Title

    Controllability, zeros, and filtrations for singular systems

  • Author

    Schrader, Cheryl B. ; Wyman, Bostwick F. ; Giust, Steven J.

  • Author_Institution
    Div. of Eng., Texas Univ., San Antonio, TX, USA
  • Volume
    3
  • fYear
    1995
  • fDate
    13-15 Dec 1995
  • Firstpage
    2354
  • Abstract
    The global zero module of a matrix pencil measures controllability and uncontrollability of an associated singular linear system. If the global zero module vanishes, then the polynomial filtration on the Wedderburn-Forney space of the pencil kernel corresponds to the global controllability filtration of the system. This correspondence gives a new structural interpretation of a matrix pencil´s Kronecker indices
  • Keywords
    controllability; filtering theory; linear systems; matrix algebra; poles and zeros; polynomials; Kronecker indices; Wedderburn-Forney space; global zero module; matrix pencil; polynomial filtration; singular systems; uncontrollability; Controllability; Filtration; H infinity control; Kernel; Mathematics; Poles and zeros; Polynomials; Transfer functions; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
  • Conference_Location
    New Orleans, LA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-2685-7
  • Type

    conf

  • DOI
    10.1109/CDC.1995.480687
  • Filename
    480687