DocumentCode :
295237
Title :
Controllability, zeros, and filtrations for singular systems
Author :
Schrader, Cheryl B. ; Wyman, Bostwick F. ; Giust, Steven J.
Author_Institution :
Div. of Eng., Texas Univ., San Antonio, TX, USA
Volume :
3
fYear :
1995
fDate :
13-15 Dec 1995
Firstpage :
2354
Abstract :
The global zero module of a matrix pencil measures controllability and uncontrollability of an associated singular linear system. If the global zero module vanishes, then the polynomial filtration on the Wedderburn-Forney space of the pencil kernel corresponds to the global controllability filtration of the system. This correspondence gives a new structural interpretation of a matrix pencil´s Kronecker indices
Keywords :
controllability; filtering theory; linear systems; matrix algebra; poles and zeros; polynomials; Kronecker indices; Wedderburn-Forney space; global zero module; matrix pencil; polynomial filtration; singular systems; uncontrollability; Controllability; Filtration; H infinity control; Kernel; Mathematics; Poles and zeros; Polynomials; Transfer functions; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.480687
Filename :
480687
Link To Document :
بازگشت