DocumentCode
295237
Title
Controllability, zeros, and filtrations for singular systems
Author
Schrader, Cheryl B. ; Wyman, Bostwick F. ; Giust, Steven J.
Author_Institution
Div. of Eng., Texas Univ., San Antonio, TX, USA
Volume
3
fYear
1995
fDate
13-15 Dec 1995
Firstpage
2354
Abstract
The global zero module of a matrix pencil measures controllability and uncontrollability of an associated singular linear system. If the global zero module vanishes, then the polynomial filtration on the Wedderburn-Forney space of the pencil kernel corresponds to the global controllability filtration of the system. This correspondence gives a new structural interpretation of a matrix pencil´s Kronecker indices
Keywords
controllability; filtering theory; linear systems; matrix algebra; poles and zeros; polynomials; Kronecker indices; Wedderburn-Forney space; global zero module; matrix pencil; polynomial filtration; singular systems; uncontrollability; Controllability; Filtration; H infinity control; Kernel; Mathematics; Poles and zeros; Polynomials; Transfer functions; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location
New Orleans, LA
ISSN
0191-2216
Print_ISBN
0-7803-2685-7
Type
conf
DOI
10.1109/CDC.1995.480687
Filename
480687
Link To Document