• DocumentCode
    2952385
  • Title

    Exploring Matrix Factorization Techniques for Classification of Gene Expression Profiles

  • Author

    Schachtner, R. ; Lutter, D. ; Tomé, A.M. ; Lang, E.W. ; Vilda, P. Gómez

  • Author_Institution
    Univ. of Regensburg, Regensburg
  • fYear
    2007
  • fDate
    3-5 Oct. 2007
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    In this study we focus on diagnostic classification tasks and the extraction of related marker genes from gene expression profiles. We apply ICA and sparse NMF to various microarray data sets. The latter monitor the gene expression levels of either human breast cancer (HBC) cell lines [1] or the famous leucemia data set [2] under various environmental conditions. We show that these matrix decomposition techniques are able to identify relevant signatures in the deduced matrices and extract marker genes from these gene expression profiles. With these marker genes corresponding test data sets can be classified into related diagnostic categories.
  • Keywords
    biology computing; cancer; independent component analysis; matrix algebra; pattern classification; diagnostic classification tasks; gene expression profiles classification; human breast cancer; matrix decomposition techniques; matrix factorization techniques; microarray data sets; Bones; Breast cancer; Data mining; Gene expression; Independent component analysis; Matrix decomposition; Metastasis; Mice; Testing; White blood cells; Independent component analysis; gene expression profiles; sparse nonnegative matrix factorization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on
  • Conference_Location
    Alcala de Henares
  • Print_ISBN
    978-1-4244-0830-6
  • Electronic_ISBN
    978-1-4244-0830-6
  • Type

    conf

  • DOI
    10.1109/WISP.2007.4447571
  • Filename
    4447571