Title :
Functional Parallelism with Shared Memory and Distributed Memory Approaches
Author :
Kandegedara, Mahesh ; Ranasinghe, D.N.
Author_Institution :
Sch. of Comput., Univ. of Colombo, Colombo
Abstract :
The recent enhancements in processor architechtures have given rise to multi-threaded, multi-core and multi-processor based clusters of high performance computing. To exploit the variety of parallelism available in these current and future computer systems, programmers must use appropriate parallel programming approaches. Though conventional programming models exist for parallel programming neither of them have sufficiently addressed the emerging processor technologies. The paper evaluates how functional programming can be used with distributed memory and shared memory languages to exploit the scalability, heterogeneity and flexibility of clusters in solving the recursive Strassen´s matrix multiplication problem. The results show that the functional language Erlang is more efficient than virtual shared memory approach and can be made more scalable than distributed memory programming approaches when incorporated with OpenMP.
Keywords :
distributed memory systems; matrix algebra; parallel programming; recursive functions; shared memory systems; distributed memory programming; functional parallelism; high performance computing; parallel programming; processor architechtures; recursive matrix multiplication problem; shared memory languages; virtual shared memory; Concurrent computing; Equations; Functional programming; High performance computing; Information systems; Parallel processing; Parallel programming; Programming profession; Region 10; Signal processing algorithms; Erlang; MPI; OpenMP; functional; matrix multiplication; multi-core; multi-processor; multi-threaded;
Conference_Titel :
Industrial and Information Systems, 2008. ICIIS 2008. IEEE Region 10 and the Third international Conference on
Conference_Location :
Kharagpur
Print_ISBN :
978-1-4244-2806-9
Electronic_ISBN :
978-1-4244-2806-9
DOI :
10.1109/ICIINFS.2008.4798422