Title :
Performance Evaluation of Multi-Frame Super-Resolution Algorithms
Author :
Nelson, Karl ; Bhatti, A. ; Nahavandi, S.
Author_Institution :
Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia
Abstract :
Multi-frame super-resolution algorithms aim to increase spatial resolution by fusing information from several low-resolution perspectives of a scene. While a wide array of super-resolution algorithms now exist, the comparative capability of these techniques in practical scenarios has not been adequately explored. In addition, a standard quantitative method for assessing the relative merit of super-resolution algorithms is required. This paper presents a comprehensive practical comparison of existing super-resolution techniques using a shared platform and 4 common greyscale reference images. In total, 13 different super-resolution algorithms are evaluated, and as accurate alignment is critical to the super-resolution process, 6 registration algorithms are also included in the analysis. Pixel-based visual information fidelity (VIFP) is selected from the 12 image quality metrics reviewed as the measure most suited to the appraisal of super-resolved images. Experimental results show that Bayesian super-resolution methods utilizing the simultaneous autoregressive (SAR) prior produce the highest quality images when combined with generalized stochastic Lucas-Kanade optical flow registration.
Keywords :
image resolution; VIFP; image quality metrics; image reference; multiframe super resolution algorithms; performance evaluation; spatial resolution; visual information fidelity; Algorithm design and analysis; Image quality; Measurement; PSNR; Signal resolution; Spatial resolution;
Conference_Titel :
Digital Image Computing Techniques and Applications (DICTA), 2012 International Conference on
Conference_Location :
Fremantle, WA
Print_ISBN :
978-1-4673-2180-8
Electronic_ISBN :
978-1-4673-2179-2
DOI :
10.1109/DICTA.2012.6411669