DocumentCode :
2955764
Title :
On C-Degrees, H-Degrees and T-Degrees
Author :
Merkle, Wolfgang ; Stephan, Frank
Author_Institution :
Ruprecht-Karls-Univ. Heidelberg, Heidelberg
fYear :
2007
fDate :
13-16 June 2007
Firstpage :
60
Lastpage :
69
Abstract :
Following a line of research that aims at relating the computation power and the initial segment complexity of a set, the work presented here investigates into the relations between Turing reducibility, defined in terms of computation power, and C-reducibility and H-reducibility, defined in terms of the complexity of initial segments. The global structures of all C-degrees and of all H-degrees are rich and allows to embed the lattice of the powerset of the natural numbers under inclusion. In particular, there are C-degrees, as well as H-degrees, that are different from the least degree and are the meet of two other degrees, whereas on the other hand there are pairs of sets that have a meet neither in the C-degrees nor in the H-degrees; these results answer questions in a survey by Nies and Miller. There are r.e. sets that form a minimal pair for C-reducibility and Sigma2 0 sets that form a minimal pair for H-reducibility, which answers questions by Downey and Hirschfeldt. Furthermore, the following facts on the relation between C-degrees, H-degrees and Turing degrees hold. Every C-degree contains at most one Turing degree and this bound is sharp since there are C-degrees that do contain a Turing degree. For the comprising class of complex sets, neither the C-degree nor the H-degree of such a set can contain a Turing degree, in fact, the Turing degree of any complex set contains infinitely many C-degrees. Similarly the Turing degree of any set that computes the halting problem contains infinitely many H-degrees, while the H-degree of any 2-random set R is never contained in the Turing degree of R. By the latter, H-equivalence of Martin-Lof random sets does not imply their Turing equivalence. The structure of the Cdegrees contained in the Turing degree of a complex sets is rich and allows to embed any countable distributive lattice; a corresponding statement is true for the structure of H-degrees that are contained in the Turing degree of a set t- hat computes the halting problem.
Keywords :
Turing machines; computational complexity; set theory; C-degrees; C-reducibility; H-degrees; H-reducibility; T-degrees; Turing degree; Turing reducibility; complex set; computation power; natural number; segment complexity; Books; Computational complexity; Distributed computing; Embedded computing; Lattices; Length measurement; Mathematics; Turing machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity, 2007. CCC '07. Twenty-Second Annual IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
1093-0159
Print_ISBN :
0-7695-2780-9
Type :
conf
DOI :
10.1109/CCC.2007.17
Filename :
4262752
Link To Document :
بازگشت