DocumentCode :
2955835
Title :
Semantic contours from inverse detectors
Author :
Hariharan, Bharath ; Arbeláez, Pablo ; Bourdev, Lubomir ; Maji, Subhransu ; Malik, Jitendra
Author_Institution :
EECS, U.C. Berkeley, Berkeley, CA, USA
fYear :
2011
fDate :
6-13 Nov. 2011
Firstpage :
991
Lastpage :
998
Abstract :
We study the challenging problem of localizing and classifying category-specific object contours in real world images. For this purpose, we present a simple yet effective method for combining generic object detectors with bottom-up contours to identify object contours. We also provide a principled way of combining information from different part detectors and across categories. In order to study the problem and evaluate quantitatively our approach, we present a dataset of semantic exterior boundaries on more than 20, 000 object instances belonging to 20 categories, using the images from the VOC2011 PASCAL challenge [7].
Keywords :
image classification; object detection; bottom-up contour; category-specific object contour; generic object detector; inverse detector; real world image; semantic contour; Detectors; Feature extraction; Head; Humans; Semantics; Support vector machines; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2011 IEEE International Conference on
Conference_Location :
Barcelona
ISSN :
1550-5499
Print_ISBN :
978-1-4577-1101-5
Type :
conf
DOI :
10.1109/ICCV.2011.6126343
Filename :
6126343
Link To Document :
بازگشت