DocumentCode :
2956135
Title :
Integer Gaussian convolution with cache memory for real-time processing of the Scale Invariant Feature Transform algorithm
Author :
Su, Le Tran ; Phil Jung Ghang ; Lee, Jong Soo
Author_Institution :
Sch. of Comput. Eng. & Inf. Technol., Univ. of Ulsan, Ulsan
fYear :
2007
fDate :
3-6 Oct. 2007
Firstpage :
298
Lastpage :
301
Abstract :
The Gaussian smoothing operator is a 2-D convolution operator which is used to blur images and remove detail and noise in the SIFT (scale invariant feature transform) algorithm. For real-time processing of SIFT, we use our integer Gaussian filtering and cache memory managing schemes using SSE instructions. Single instruction multiple data (SIMD) extensions are currently available in new Pentium processors. We optimize the integer Gaussian filter mask for better precision in key-points detection and compare the result of applying the scheme with those obtained by using the floating processing technique. We apply our scheme to various kinds of images and measure the effectiveness.
Keywords :
Gaussian processes; cache storage; convolution; image denoising; smoothing methods; storage management; transforms; Gaussian smoothing operator; Pentium processors; SSE instructions; cache memory managing schemes; detail removal; floating processing technique; image blurring; integer Gaussian convolution; integer Gaussian filter mask; integer Gaussian filtering; key-points detection; noise removal; scale invariant feature transform algorithm; single instruction multiple data extensions; Cache memory; Convolution; Filtering; Filters; Gaussian noise; Image converters; Information technology; Kernel; Shape; Smoothing methods; Gaussian filtering; SIFT algorithm; SSE instructions; integer Gaussian mask;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Strategic Technology, 2007. IFOST 2007. International Forum on
Conference_Location :
Ulaanbaatar
Print_ISBN :
978-1-4244-3589-0
Electronic_ISBN :
978-1-4244-1831-2
Type :
conf
DOI :
10.1109/IFOST.2007.4798587
Filename :
4798587
Link To Document :
بازگشت