DocumentCode :
2956466
Title :
Tracking from optical flow
Author :
Lucena, M.J. ; Fuertes, J.M. ; Gomez, J.I. ; De La Blanca, N. Perez ; Garrido, Austin
Author_Institution :
Departamento de Informatica, Univ. de Jaen, Spain
Volume :
2
fYear :
2003
fDate :
18-20 Sept. 2003
Firstpage :
651
Abstract :
In this paper, we present an observation model based on the Lucas and Kanade algorithm for computing optical flow, to track objects using particle filter algorithms. Although optical flow information enables us to know the displacement of objects present in a scene, it cannot be used directly to displace an object model since flow calculation techniques lack the necessary precision. In view of the fact that probabilistic tracking algorithms enable imprecise or incomplete information to be handled naturally, this model has been used as a natural means of incorporating flow information into the tracking.
Keywords :
image sequences; probability; tracking filters; Kanade algorithm; Lucas algorithm; flow calculation technique; object displacement; object tracking; optical flow computing; optical flow information; particle filter algorithm; probabilistic tracking algorithm; Current measurement; Equations; Image motion analysis; Layout; Optical filters; Optical signal processing; Particle filters; Particle tracking; Probability distribution; Signal processing algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the 3rd International Symposium on
Print_ISBN :
953-184-061-X
Type :
conf
DOI :
10.1109/ISPA.2003.1296357
Filename :
1296357
Link To Document :
بازگشت