• DocumentCode
    2959321
  • Title

    Sensor-fusion in spiking neural network that generates autonomous behavior in real mobile robot

  • Author

    ALNAJJAR, FADY ; Murase, Kazuyuki

  • Author_Institution
    Grad. Sch. of Eng.
  • fYear
    2008
  • fDate
    1-8 June 2008
  • Firstpage
    2200
  • Lastpage
    2206
  • Abstract
    We here introduce a novel adaptive controller for autonomous mobile robot that binds N types of sensory information. For each sensory modality, sensory-motor connection is made by a three-layered spiking neural network (SNN). The synaptic weights in the model have the property of spike timing-dependent plasticity (STDP) and regulated by presynaptic modulation signal from the sensory neurons. Each synaptic weight is incrementally adapted depending upon the firing rate of the presynaptic modulation signal and that of the hidden-layer neuron(s). Information from different types of sensors are bound at the motor neurons. A real mobile robot Khepera with the SNN controller quickly adapted into an open environment and performed the desired task successfully. This approach could be applicable to a robot with inputs of various sensory modalities and various types of motor outputs.
  • Keywords
    adaptive control; mobile robots; neurocontrollers; sensor fusion; adaptive controller; autonomous behavior; autonomous mobile robot; hidden-layer neuron; presynaptic modulation signal; real mobile robot; sensor-fusion; sensory neurons; spike timing-dependent plasticity; spiking neural network; Adaptive control; Biological neural networks; Computer networks; Fires; Mobile robots; Neural networks; Neurons; Programmable control; Reluctance motors; Robot sensing systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on
  • Conference_Location
    Hong Kong
  • ISSN
    1098-7576
  • Print_ISBN
    978-1-4244-1820-6
  • Electronic_ISBN
    1098-7576
  • Type

    conf

  • DOI
    10.1109/IJCNN.2008.4634102
  • Filename
    4634102