DocumentCode :
2959374
Title :
Adaptive on-line registration algorithm based on GLR
Author :
Lian, Feng ; Han, Chongzhao ; Shi, Yong
Author_Institution :
Sch. of Electron. Eng., Xian JiaoTong Univ., Xian
fYear :
2008
fDate :
1-8 June 2008
Firstpage :
2220
Lastpage :
2226
Abstract :
In practical system, the sensor biases may jump abruptly. An adaptive on-line algorithm is presented in this paper for this situation. The algorithm can detect the jump onset time and estimate the jump level base on General Likelihood Ratio (GLR) test. The Monte Carlo results show, our algorithm can adaptively estimate the bias jump level well and the estimation error will not increase remarkably as other previous registration algorithms. The bias estimation error also converges to the Cramer-Rao lower bound (CRLB) after the jumping.
Keywords :
Monte Carlo methods; airborne radar; sensor fusion; Cramer-Rao lower bound; Monte Carlo method; adaptive online registration algorithm; estimation error; general likelihood ratio; Airborne radar; Geometry; Global Positioning System; Kalman filters; Monte Carlo methods; Noise measurement; Position measurement; Radar tracking; Surveillance; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on
Conference_Location :
Hong Kong
ISSN :
1098-7576
Print_ISBN :
978-1-4244-1820-6
Electronic_ISBN :
1098-7576
Type :
conf
DOI :
10.1109/IJCNN.2008.4634105
Filename :
4634105
Link To Document :
بازگشت