Title :
Efficient learning of sparse, distributed, convolutional feature representations for object recognition
Author :
Sohn, Kihyuk ; Jung, Dae Yon ; Lee, Honglak ; Hero, Alfred O., III
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA
Abstract :
Informative image representations are important in achieving state-of-the-art performance in object recognition tasks. Among feature learning algorithms that are used to develop image representations, restricted Boltzmann machines (RBMs) have good expressive power and build effective representations. However, the difficulty of training RBMs has been a barrier to their wide use. To address this difficulty, we show the connections between mixture models and RBMs and present an efficient training method for RBMs that utilize these connections. To the best of our knowledge, this is the first work showing that RBMs can be trained with almost no hyperparameter tuning to provide classification performance similar to or significantly better than mixture models (e.g., Gaussian mixture models). Along with this efficient training, we evaluate the importance of convolutional training that can capture a larger spatial context with less redundancy, as compared to non-convolutional training. Overall, our method achieves state-of-the-art performance on both Caltech 101 / 256 datasets using a single type of feature.
Keywords :
Boltzmann machines; image classification; image representation; learning (artificial intelligence); object recognition; Caltech 101-256 datasets; classification performance; feature representations; hyperparameter tuning; informative image representations; learning; mixture models; object recognition; restricted Boltzmann machines; Clustering algorithms; Context; Convolutional codes; Encoding; Feature extraction; Object recognition; Training;
Conference_Titel :
Computer Vision (ICCV), 2011 IEEE International Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4577-1101-5
DOI :
10.1109/ICCV.2011.6126554