DocumentCode :
295980
Title :
On optimal radial basis function nets and nonlinear function estimates
Author :
Krzyzak, Adam
Author_Institution :
Dept. of Comput. Sci., Concordia Univ., Montreal, Que.
Volume :
1
fYear :
1995
fDate :
Nov/Dec 1995
Firstpage :
265
Abstract :
Radial basis function (RBF) networks with one hidden layer are considered. Using the connections between RBF nets and the kernel regression estimates (KRE) upper bounds on L2 errors of RBF nets are derived and optimized with respect to the radial functions. Analytical expressions the optimal radial functions are given and the optimal rates of convergence in the class smooth functions are derived
Keywords :
estimation theory; feedforward neural nets; learning (artificial intelligence); statistical analysis; kernel regression estimates; nonlinear function estimates; optimal radial basis function nets; optimal rates of convergence; smooth functions; Computational Intelligence Society; Computer errors; Computer science; Convergence; Kernel; Neural networks; Radial basis function networks; Regression analysis; Tail; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1995. Proceedings., IEEE International Conference on
Conference_Location :
Perth, WA
Print_ISBN :
0-7803-2768-3
Type :
conf
DOI :
10.1109/ICNN.1995.488106
Filename :
488106
Link To Document :
بازگشت