Title :
SUSurE: Speeded Up Surround Extrema feature detector and descriptor for realtime applications
Author :
Ebrahimi, Mojtaba ; Mayol-Cuevas, Walterio W
Author_Institution :
Dept. of Comput. Sci., Univ. of Bristol, Bristol, UK
Abstract :
There has been significant research into the development of visual feature detectors and descriptors that are robust to a number of image deformations. Some of these methods have emphasized the need to improve on computational speed and compact representations so that they can enable a range of real-time applications with reduced computational requirements. In this paper we present modified detectors and descriptors based on the recently introduced CenSurE [1], and show experimental results that aim to highlight the computational savings that can be made with limited reduction in performance. The developed methods are based on exploiting the concept of sparse sampling which may be of interest to a range of other existing approaches.
Keywords :
image representation; object detection; CenSurE; compact representations; computational speed; image deformations; real-time applications; sparse sampling; visual feature descriptors; visual feature detectors; Application software; Computer vision; Detectors; Filters; Image databases; Information services; Internet; Kernel; Robustness; Web sites;
Conference_Titel :
Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-3994-2
DOI :
10.1109/CVPRW.2009.5204313