DocumentCode :
2966890
Title :
Gauss-Lobatto-Kronrod Formulae and Adaptive Numerical Integration
Author :
Trimbitas, Radu T. ; Trimbitas, Maria Gabriela
Author_Institution :
Dept. of Appl. Math., BabesIBolyai Univ., Cluj-Napoca, Romania
fYear :
2008
fDate :
26-29 Sept. 2008
Firstpage :
183
Lastpage :
186
Abstract :
The aim of this paper is to develop a MATLAB function for one dimensional numerical integration based on adaptive algorithms and Gauss-Lobatto-Kronrod formulas. Using Maple, we find a triple of formulas, and then we use it to code ananalogous of MATLAB quadl function with a higher degree of exactness. Finally, some examples and tests which compare our function and quadl are given. Our function is a good alternative to quadl when the accuracy and reliability requirements are hard.
Keywords :
integration; mathematics computing; 1D numerical integration; Gauss-Lobatto-Kronrod formulae; MATLAB function; Maple; adaptive algorithm; adaptive numerical integration; Adaptive algorithm; Computer science; Error analysis; Gaussian processes; Helium; MATLAB; Mathematics; Polynomials; Scientific computing; Testing; Gauss-Lobatto-Kronrod formula; adaptive algorithm; numerical integration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Symbolic and Numeric Algorithms for Scientific Computing, 2008. SYNASC '08. 10th International Symposium on
Conference_Location :
Timisoara
Print_ISBN :
978-0-7695-3523-4
Type :
conf
DOI :
10.1109/SYNASC.2008.27
Filename :
5204808
Link To Document :
بازگشت