Title :
Emergence of Information Processor Using Real World--Real-Time Learning of Pursuit Problem
Author :
Fujii, Hiroyuki ; Ito, Kazuyuki ; Gofuku, Akio
Author_Institution :
Okayama University, Japan
Abstract :
Real-time reinforcement learning is difficult because number of trials is too much to complete learning within limited time. To solve the problem, we consider reduction of action-state space by information processor using real world without prior knowledge. We obtain the information processor in evolution by setting the fitness as ease of learning. As a typical example, we address pursuit problem in which dynamics is regarded. As a result, the processor has been obtained in evolution and agent has learned in real-time.
Conference_Titel :
Hybrid Intelligent Systems, 2006. HIS '06. Sixth International Conference on
Conference_Location :
Rio de Janeiro, Brazil
Print_ISBN :
0-7695-2662-4
DOI :
10.1109/HIS.2006.264890